
EUROPA's Built-in Solver

EUROPA's Built-in Solver
Definitions1.
Preliminaries2.
Requirements

Scope Definition
Observations1.

1.

Flaw Selection
Observations1.

2.

Flaw Resolution
Observations1.

3.

3.

Technical Approach
Most Basic Design Decision1.
The Chronological Backtracking Planning Algorithm2.
The Search Control Object Model3.
Configuration4.
Possible elaborations for Expressions

The local context for expression evaluation1.
Outline for language sytax and semantics2.
Evolution and Intergration3.

5.

4.

Notes on Object Flaws5.

1.

EUROPA's Built-in Solver
NOTE: This section is still work in progress, most of the content below is extracted from the Solver design docs
and we're still in the process of transforming them into end user documentation. Having said that, this should give
you an idea of how the solver works. We realize this is still somehow crude, but hope that this solver description,
along with the Built-in Solver Configuration section and the examples in the repository, will allow users, with some
effort, to configure the solver for their own purposes.

This document outlines the requirements and technical approach for controlling the search undertaken by the
standard EUROPA solver. We assume a chronological-backtracking, heuristically guided, refinement search.

For an overview of how to configure the built-in solver using XML, see Built-in Solver Configuration.

Definitions

Plan Database: A set contains all useful data of a plan: tokens, objects, and variables.•
Guard: An if statement.•
Decision point: A timepoint where a flaw is to be chosen to handle.•
Flaw Filter: A program that decides which types of flaws to ignore in planning•

Preliminaries

In our planning paradigm, a solver is a problem solving actor which operates to resolve flaws in a plan database.
Informally, a flaw is an indication of a potential for inconsistency in a given partial plan. We distinguish 3 types of
flaw, each with its own corresponding procedure to resolve it:

EUROPA's Built-in Solver 1

A Threat or Object Flaw: arises when an ordering is required for tokens associated with an object. This
occurs in objects such as Timelines to ensure that a mutual exclusion is enforced, and on metric resources
to ensure that the resource level is within specified limits.

•

An Open Condition or Token Flaw: arises when a token is in the Plan Database but not yet in the Plan.
Such a token is said to be inactive. Token Flaws are resolved through merging with an existing token
already in the plan, through insertion as a new token in the plan, or through rejection, if permitted.

•

An Unbound Variable, or Variable Flaw: arises if there are variables of tokens already in the plan whose
values have not been specified. Such a variable is said to be unbound. Variable Flaws are addressed by
specifying a value for the domain.

•

Within the standard search procedure we distinguish 3 elements of search control which provide the tools for tuning
and customization to particular applications and domains:

Scope Definition: defines the set of flaws that must be resolved to complete the plan. When there are no
flaws remaining, and the plan database is not inconsistent, the plan is considered complete and the solver
terminates.

•

Flaw Selection: identifies which flaw to resolve next.•
Flaw Resolution: executes appropriate underlying procedures to resolve a flaw, until all stipulated options
are exhausted. These underlying procedures include the actions already mentioned e.g. token activation,
token merging, token ordering, variable binding. In addition they must address aggregation and ordering of
choices for resolution. Note that a flaw may persist after resolution steps have been taken. For example, a
Timeline may require additional orderings in order to ensure the temporal mutual exclusion is satisfied.

•

The focus of this document is to provide the means to efficiently, compactly and flexibly customize each of the
above elements of search control to provide a versatile solver.

Requirements

This section reviews by example the main components of search control and presents observations for
generalization of the requirement or to consider as we further develop the technical approach.

Scope Definition

In general, there may be many sophisticated ways in which the scope of flaws for a solver to work on can be
specified. We look at this from the point of view of filters applied to the built in set of system flaws described
earlier. Examples of the criteria that have arisen include:

Exclude all singleton Variable Flaws that are not guards in a rule.•
Exclude all token flaws whose timepoints are not necessarily contained by the solvers horizon. This is a
dynamic flaw filter in that it may have to be re-evaluated if the timepoints are restricted.

•

Exclude all temporal variable flaws. This is a static flaw filter since a variable is always a temporal
variable.

•

Exclude all variable flaws with the name foo. This is a static flaw filter since the name of a variable cannot
change.

•

Exclude all variable flaws with infinite domains. This may be a static filter for some variables and a
dynamic filter for others. For example, all variabes with enumerated domains are finite. Interval domains
may be finite if they are singletons, or if they are restricted to integer values and have finite bounds.

•

Exclude all variable flaws with the name foo unless they are singletons. This is a dynamic filter since it
must be re-evaluated as the domain is restricted.

•

Preliminaries 2

Exclude all object flaws on objects of class Foo. This applies to all subclasses of Foo also.•
Exclude all variable flaws on all tokens of all objects of class Foo. This is a static filter.•
Exclude all token flaws which can be rejected until there are no token flaws which cannot be rejected. This
is a dynamic filter that should be re-evaluated as tokens change their state or are added to the plan database.

•

Exclude all start variables of all tokens of predicate Bar unless the start variable is a singleton or the level
of the resource between the lower bound of the start variable, and a horizon h exceeds a given threshold.
This is a dynamic filter.

•

Observations

We consider that the requirements of scope specification can be considered in 2 parts:

What filters should be considered for a given object, token or variable flaw? This is a problem of matching
the scope specification of a filter with the context of a flaw. Note that multiple filters may apply.

•

What test should be applied once the filter is obtained? In the simplest cases, this is trivial, since the match
against a scope specification is sufficient to conclusively exclude a flaw. For example, filtering all temporal
variables by filtering on the names of start, end and duration will easily exlude any Variable Flaws with
these names. However, it may be more complex requiring arbitrary procedures to be executed to evaluate
rich and possibly only remotely connected contextual information. This scenario was illustrated where a
Flaws is filtered babsed on a resource level over an interval of time.

•

Flaw Selection

There are many conceivable ways in which the next flaw to work on can be determined. Here are some examples:

Prefer unit variable flaws over all other flaws. The rationale behind this approach is based on the
combination of prefering the most constrained flaw with the cheapest cost to find such a flaw.

•

Prefer unit token flaws over all other flaws except unit variable flaws.•
Prefer non-variable flaws participating in a conditional subgoal over non-unit variable flaws not
participating in a subgoal.

•

Prefer Object Flaws with the least number of ordering choices.•
Prefer token flaws most recently created. The rationale for this approach is to recognize that many goals in
a plan may be quite independent of one another.

•

Observations

One has to carefully consider the cost of computing sophisticated heuristics with their benefits. One should like to
experiment with these matters as a planning problem is being tackled and the nature of the search is becoming
apparent. Stronger heuristics may need to be introduced in a targetted fashion to address particularly troublesome
aspects of the search. In contrast, cheap and naive methods may well suffice where choices seem to have little
impact on the problem. Thus we have a few key points:

We must be able to customize the heuristic evaluation technique for targetted subsets of the set of flaws.•
Given that we will likely end up in a division of the set of flaws into subsets governed by specialized
techniques, it is imperitive to have a globally agreed priority scheme to allow one group to over-ride
another, and also to permit a cut-off prior to visiting all flaws if a current best priority cannot be beaten.

•

It must be possible to unambiguously relate a flaw to exactly one flaw selection mechanism. This
relationship can be static or dynamic.

•

Scope Definition 3

Flaw Resolution

Once again there is quite a spectrum of complexity for resolving flaws. Here are some examples encountered so far:

Prefer values in ascending order of all Variables of all Tokens on all objects of class Foo or its subclasses.•
Prefer values in descending order for all Variables of the name foo•
Randomly select from all possible values for all Variables on all Tokens of all objects of class Bing using a
uniform distribution.

•

Prefer merging with tokens with minimal distance from the inactive token. This selects the least
constraining value in some sense.

•

Select a single value for all variables with name foo by request from external agent WeatherSensor?.•
Prefer to place tokens as early as possible for all instances of the class Bar.•
Prefer values on variables of tokens of predicate Baz which have the highest value for the function func.•
Prefer resolving token flaws through merging over activation. This is based on the intuition that merging
will produce a smaller plan.

•

Observations

There is clearly a diversity of resolution schemes. Once again we see the need for a targetted approach allowing
very specific and quite esoteric methods to be used and also for very straightforward methods to be used. The
former are most likely relevant for key parts of the search, for whatever the purposes of the solver. We note the
following additional points:

We must be able to customize the flaw resoultion technique for arbitrary subsets of the flaws.•
It seems highly desireable to seek a close collaboration between Flaw Selection and Flaw Resolution since
the data obtained to select the next flaw to work with, which may have been costly to obtain, is more often
than not going to be directly useful to the Flaw Resolution technique. For example, computing the set of
tokens with which a given token can be ordered is often useful to determine its priority as a flaw and is
immediately useful as input to the resolver.

•

It may be desireable to scope Flaw Resolution mechanisms within the scope of Flaws of a given Flaw
Selector.

•

Technical Approach

In this section we make the case for a dynamic plug-in approach for customization of the solver. To ground that we
present the core planning algorithm and indicate where components can be plugged in. We go on to describe a
proposed syntax and semantics for matchable expressions which can be used for configration control, and describe
the interfaces which will be provided to integrate search control components. Finally, a set of standard components
are described and examples of how they can be configured for a solver will be presented.

Most Basic Design Decision

There are 2 basic approaches to accomplishing the search control capabilities described. The first is to develop a
rich and expressive scripting language which can be used to address each area of Scope Management, Flaw
Selection, and Flaw Resolution in a context dependent manner. The second is to prefer a hybrid approach which
uses a combination of a specialized language as a means to bind to specialized C++ code for final computation in
each case. This second approach focuses on fast matching of entities based on local contextual information for each
flaw type, and binding to pre-compiled plug-ins. The former approach has the advantage that it will most likely
result in a coherent language for describing a carefully circumscribed set of search control capabilities. Its principal

Flaw Resolution 4

disadvantage is that it will likely be:

complex as it attempts to cover a broad scope of scenarios•
inevitably deficient and hence limiting•
costly to develop and maintain•

The latter, hybrid approach offers flexibility and extendibility since we can plug in arbitrary procedural code to
address the requirements of flaw selection and resolution. It will lead to more efficient sytems since specialized,
optimized code can be inserted for particularly costly calculations. It will also be less costly to develop and
maintain since it permits rapid development of basic functionality and targetted incremental development of
additional capabilities. The main disadvantage of the hybrid approach is that of reduced transparency for a user
since the semantics of final calculation will be specific to component plug-ins. This is similar to the drawback of
using procedural constraints instead of specifying the semantics of a constraint explicitly in the language. Arguably,
there is a further potential draw-back in that there may be more of a requirement on the part of the application
developer to have recourse to C++ programing. This can be augmented with a reasonable set of available plug-ins,
which will be enhanced over time. We shall proceed with the hybrid approach.

The Chronological Backtracking Planning Algorithm

The structure of the planning algorithm provides us the template which we instantiate to provide a specific solver.
The general planning algorithm is outlined below. Note that the algorithm takes as input an initial Plan Database
containing a partial plan, and a set of Flaw Managers. A Flaw Manager will be responsible for obtaining the set of
Flaws within some confined subset of overall Flaws. A Flaw Manager is further resposnible for formulating a
DecisionPoint to address a Flaw under it's control. A DecisionPoint encapsulates the details of what operations on
the partial plan can be taken and in what order they should be tried.

Result plan(PlanDatabase db, FlawManagers fms){
 if(!checkConsistency(db))
 return INITIALLY_INCONSISTENT;

 // Initialize the stack for closed decisions
 Stack s = {};

 // Allocate the next decision point, if
 // there is one. Incorporates the services of
 // Scope Management and Flaw Selection
 DecisionPoint dp =
 selectDecisionPoint(db, fms);

 while(dp != NULL){
 // Exhaustively try current decision point.
 // Incorportaes the services of Flaw Resolution
 while(dp.hasNext()){
 dp.tryNext();
 if(!checkConsistency(db))
 dp.undo();
 }

 // If not consistent, have to undo last
 // closed decision
 if(!checkConsistency(db)){ // Exhausted choices
 if(s.isEmpty())
 return SEARCH_EXHAUSTED;
 else {
 dp = s.pop();

Most Basic Design Decision 5

 dp.undo();
 }
 }
 else {
 s.push(dp);
 dp = selectDecisionPoint(db, fm);
 }
 }

 return PLAN_FOUND;
}

The function !selectNextDecisionPoint is listed below. It takes a Plan Database and a sequence of Flaw Managers.
Note that the algorithm evaluates all Flaw Managers in order until it finds a Decision Point with the best heuristic
score (i.e. lowest priority value). A threshold is used to permit a cut-off as soon as a decision point is discovered
which we know to be a best choice. This value is 1, recognizing that as soon as a unit decision is discovered, or a
point of no choices available, we can exit immediately. The ordering of flaw managers is important in that it
defines the ordering if all other things are equal.

DecisionPoint selectDecisionPoint(
 PlanDatabase db,
 FlawManagers fms){
 unsigned int priority = WORST_PRIORITY;
 FlawManager fm = getNextFlawManager(db, fms);
 DecisionPoint bestDecision = NULL;

 while(priority > BEST_PRIORITY && fm != NULL){
 DecisionPoint candidate =
 fm.getNextDecisionPoint(db, priority);

 if(candidate == NULL)
 fm = getNextFlawManager(db, fms);
 else
 bestDecision = candidate;
 }
 return bestDecision;
}

In summary, observe the following points of flexibility for controlling search according to the above scheme:

A sequence of Flaw Managers can be passed to the planning algorithm to configure its scope. These
components will be visited in the order defined in the sequence on input.

•

The algorithm to obtain the next decision point is encapsualted for each Flaw Manager. This is according
to their respective implementations of FlawManager::getNextDecisionPoint(PlanDatabase
db, unsigned int priorityToBeat).

•

Algorithms and data structures to formulate the ordered set of choices for resolving a flaw, and the
execution of a choice, are completely encapsulated within the DecsionPoint] class, which is allocated by
the responsible Flaw Manager.

•

The Search Control Object Model

TODO: This is NOT the right figure, unfortunately.

The Chronological Backtracking Planning Algorithm 6

The above figure is a UML class diagram of main elements of the Search Control Object Model. The core
collaboration is between the following elements:

Solver: provides the core algorithm and data structures to accomplish a chronological backtracking
heuristic search. It deals in abstract constructs of Flaw Managers and Decision Points. These abstractions
allow the planner to delegate responsibility for how to manage scope, flaw selection, and flaw resolution to
components that may be plugged in. Thus we use the planner as an example of a Template Pattern for
providing configurable search control.

•

FlawManager: provides for the flaw selection from a given subset of flaws defined to be in scope. It uses a
pair of Flaw Filters to manage static and dynamic scoping rules. The system shall ensure that Flaw
Managers manage disjoint sets of Flaws.

•

FlawFilter: the only responsibility of this class is to answer the question: is a given flaw in scope? In
contrast to previous designs, this class does not maintain the set of all flaws. This prevented combining a
flaw selection heuristic with a test for scope. Such a combination may exploit opportunities for early
termination when a flaw of highest priority (such as a unit decision) is found. Experience shows that such
flaws are common. Each FlawManager is constructed with a StaticFilter and a DynamicFilter.

•

StaticFilter: separates out scoping criteria that always return the same answer for any candidate flaw.•
DynamicFilter: may be re-evaluated a number of times before a candidate flaw actually comes into scope.
For example, we may wish to filter a guard variable until it becomes a singleton. A DynamicFilter should
have the property that once it permits a flaw to be in scope, it will remain in scope for all subsequent
restrictions of the partial plan until it is resolved. Such an assumption, which seems quite reasonable in
practice, permits internal caching which will be advantageous. In addition, the DynamicFilter enforces a
given horizon as a built in behavior. Finally, the DynamicFilter uses a set of FilterConditions to allow
flexible customization through plug-ins

•

FilterCondition: implements a specific test for a candidate flaw. A candidate flaw must pass all relevant
filter conditions to be included in the scope.

•

DecsionPoint: provides the means to formulate the set of choices and visit those choices in a priority order.
The interface allows us to encapsulate all the details of how to store candidate choices, how to order them,
and how to track what has been tried already. Note that there is an opportnity for close collaboration
between a particular FlawManager and a particular DecisionPoint since the details of allocation are
encapsualted within implementation components rather than at the core interface level. This removes a
potential performance problem. For example, in order to decide which Object Flaw to work on, the
ObjectFlawManager will likely be determining the set of possible ordering choices for a given token.
Computing this set can be expensive, and so it makes sense to permit the information to be directly
exploted by an ObjectDecisionPoint. With this approach, these trade-offs can be freely explored based on
performance profiling and optimized as needed.

•

The Search Control Object Model 7

Strictly speaking, subclasses of DecisionPoint and FlawManager are not part of the core object model. This is
because an implementation could be provided which did not use them, but rather preferred for example to have a
single FlawManager and a totally different rationale for specializing DecisionPoint. However, there is a strong
motive for separating out management of token, object and variable flaws, since the events that need to be tracked
and the logic for tracking them is quite different for each such case. Similarly, the structure of decisions for object,
token and variable flaws is very different. Therefore, we will develop our component structure using this further
separation of concerns according to flaw type.

Configuration

The previous section outlined the Search Control Object Model. We can customize any given planner by plugging
in specializations of:

FlawManager or its descendants.•
FlawFilter or its descendants.•
FilterCondition or its descendants.•
DecisionPoint or its descendants.•

We can also customize a given planner by allowing for different data to be used to configure a given component.
For example, a StaticFilter is not likely to be subclassed unless a new expression capability is to be added which
cannot be added to the base class (for whatever reasons). Therefore, we would wish to customize a static filter
component through the set of expressions we want to use to match flaws to be excluded from the planner's scope. A
StaticFilter might be thought of as a heavy component since it is heavily data driven to specialize its behavior,
rather than subclassed. In contrast, we can imagine creating an extension to a VariableDecisionPoint to achieve a
Min order vs. a Max order. Such an extension would have no configuration data to customize it further, and might
be consdidered a light component since it provides no data driven range of behaviors. To illustrate this further, the
design described here could be evolved to be based on only a few components and an elaborate scripting language
passed in to configure its behavior. The reason we desire this range is to support an evolution of the implementation
as we are able to develop more sophisticated components to provide a more coherent and usable system to
end-users. This will limit possibilities of users blocking on a centralized implementation as they can freely plug-in
relatively small specializations at the fringes of the design. To accomplish this, we require a component
configuration framework that can link planning entities to concrete component implementations, and pass in data to
those implementations as needed. The scheme for doing this relies on an Abstract Factory design pattern an is
illustrated in the following figure.

Configuration 8

Possible elaborations for Expressions

As already mentioned, our design uses a simple but powerful matching mechanism to provide links between Flaws
and their relevant filters, and heuristics. We can expand this capability over time to use a richer language for
defining such matching expressions. This section outlines the kind of language we would propose, based on an
existing verification language we developed for the purposes of regression testing.

The local context for expression evaluation

We are focussed on matching against the local context of Objects, Tokens, and Variables. The approach for doing
this is based on the relations between these entities arising in the schema and the plan database. The relations of
interest are:

isA(ObjectType], ObjectType) - defines an inheritance relation between object types (STATIC).•
isA(objectName, ObjectType) - defines an object name in the plan database to be of a certain type
(STATIC).

•

hasA(ObjectType, ObjectType], ObjectName) - defines a composition relation between object types
(STATIC).

•

hasA(ObjectType, VariableType, VariableName) - defines a composition relation where variables are
composed in Objects. In current implemenations, such variables will not be flaws as they are required to be
singleton values on construction. We include it here for completeness (STATIC).

•

hasA(ObjectType, Predicate) - defines a 1 to many relation associating a given predicate with all instances
of a given object type (STATIC).

•

hasA(Predicate, VariableType, VariableName) - defines a 1 to many relation associating a set of variables
with a Predicate (STATIC). Note that this includes local variables introduced in rules.

•

!hasSubGoal(Token, Token, TemporalRelation) - defines a relation between a master token, and its
subgoal, with a qualification for the nature of the TemporalRelation (i.e. any, meets, metby, starts, ends....).
This relation is dynamic since a given relation may not exist immediately but may be added as additional
subgoal rules are triggered.

•

hasDomain(Variable, Domain) - relates a set of domain values to a variable. This is a DYNAMIC relation
since the set of values change as planning progresses. Note that certain expressions may take advantage of
the monotonic restriction of the set of values to avoid re-evaluation of expressions over domains.

•

Outline for language sytax and semantics

In general, the syntax for expressions follows that developed for validating that certain patterns exist in partial plans
using the Aver test language. This syntax is based on functions for returning sets of obects, tokens and variables:
Objects(query-spec), Tokens(query-spec) and Variables(query-spec), were:

query-spec takes the form: [operand operator operand [AND operand operator operand ..]]•
all operands resolve to a domain of values•
an operand can be a multi-valued literal domain such as {'A' 'B' 'C'} or [0.4 100.23]•
an operand can be a singleton value literal such as 'A' or 7.82 or '!fooObjectName'•
an operand can be derived from the properties of a local context e.g. this, objectType, predicateType,
varType, start, end, duration, state, object, !userDefinedVariableName, domain. Note that the set of such
properties is entirely dependent on the entity context in which they are being resolved.

•

an operand can be a function on an operand: operand-function(operand). Examples of operand functions
include: min, max, temporal-relations, ancestors, singleton

•

an operator is drawn from the set of basic domain operations: $>, <, <=, >=, ==, !=$, in, out, intersects.•

Possible elaborations for Expressions 9

Here are some sample expressions using this scheme:

Variables(objectType in \{'Foo' 'Bar' 'Baz'\} AND singleton(domain) ==
false). This will match all non-singleton variables on all tokens on all objects whose object type is in the
given set.

•

Tokens('Timeline' in ancestors(objectType)). This will match all Tokens on all objects
whose object type is derived from a Timeline.

•

Tokens(object == 'navigator' AND speed in [3 7]). This will match all tokens whose
object variable is a singleton value with the name 'navigator' and the speed predicate variable is in the range
[3 7].

•

Evolution and Intergration

Most of the component framework presented can be used independently of the matching engine, which is used by
the FlawManager and FlawFilter classes. We would be starting out with a very simple matching engine as noted.
However, we can easily pre-process more simplistic expressions into the new sytax. For example,
*.Drive.speed} becomes Variables(predicate == `'Drive' AND name=='speed. In the
interim, we can create components for dynamic filtering and static filtering on an as needed basis that implement
specific restrictions not available with the base expression capabilities. For example, the following might be used to
filter out all variable binding decisions on drive tokens which may still be rejected.

 <dynamic-filter scope=''Rover.Drive.*''
 component=''PQLExpression''>
 <intersects variable=''state''
 value=''{'Rejected'}''/>
 </dynamic-filter>

In the above example, we assume the existence of a standard component for evaluating expressions of a plan query
language.

Notes on Object Flaws

An Object Flaw arises where additional ordering constraints are required upon the tokens associated with that
object. In EUROPA 1 and in the CBPlanner, a Token-centric perspective was taken i.e. one considers a token to
inherently require some ordering on an object. The flaw model would then compute the aggregate set of ordering
choices over all possible objects. In EUROPA 1 this wold retrieve all slots across all timelines. In EUROPA 2, this
obtains all ordering pairs across all objects. There are 2 issues with this approach:

It is costly in general to construct such a large set of token ordering choices, since one must potentially
evaluate many options and the cost for evaluation of an option is relatively high.

•

It seems un-intuitive in the general case of tokens and objects to raise the flaw from the token's perspective.
Flaw detection should be based on the object which is the source of the issue. For example, one a timeline,
all tokens must be totally ordered. If active tokens on a timeline could overlap then we should require
additional ordering decisions. Similarly for a metric resource. If an envelope could be violated, but might
not be, then we are concerned to reduce the flexibility of tokens on that resource such that they bring the
limits within bounds sufficiently. An object is in a position to know this most effectively.

•

If we take an Object perspective, then under current circumstances, an Object which has tokens to order will raise
flaws for each such token, and the choices will be developed once the token is selected. Currently, a token may be
considered for ordering even though its object variable has not yet been bound. This means that we cannot conclude

Outline for language sytax and semantics 10

a dead-end simply becuase there are no viable ordering choices for this token on this particular object. This is
because it could be removed from the object as an acceptable strategy since it need not be placed on that object.
This is arguably a good approach since it permits an incremental resolution of the actual flaw, and does so in a way
that is information rich - the relevant tokens and constraints on that object are localized with the decision to order or
exclude it. In contrast, we could require that flaws are only raised when a token is necessarily placed on an object
(i.e. its object variable is a singleton). This would be quite simple and have the advantage that the decision model
for resolving object flaws remains limited to simply posting token ordering constraints. However, we would lose
some ability to work on the object flaws earlier in the planning process, and it would change the search structure.
Furthermore, it makes it very difficult to structure a search preference for ordering a token prefering particular
locations across different objectcs before other locations. If we view it from a single object perspective, then that
information is not readily available in the context of decision making, and one is forced to commit to an object
before committing to a temporal position in the plan.

This then begs the question of finding the best way to maintain the total set of tokens to order, since these are the
TokenOrder flaws. Trivially we can assume that all tokens, once activated, require an ordering. However, this is
problematic since that token may require more than one ordering in the case of a metric resource, or it may not
require any ordering at all if there is no overlap possible for this token. What we would really like is that the set of
tokens that actually require orderings is propagated by the objects (i.e. resources in general). Alternatley, we might
not propagate it, but rather just poll for it. It would be nice to defer that decision but build in the api.

A further issue with respect to flaw filtering on objects. The concept would be to ignore ordering requirements
induced by certain objects. However, if we view the situation from the perspective of tokens, then we may
formulate resolutions for a token with constrain it to an oject that has been filtered out. Should we allow this? To
prevent it we would have to sacrifice completeness. The view for now is that we would only filter the generation of
the flaw, but not prevent the resolution of the flaw from including choices on an object that would otherwise be
filtered. In order to exclude choices, it seems like we have to think in terms of access control rather than flaw
filtering.

Yet another issue - the way we structure choices around a token is just wrong in the case of resources in general. It
imposes a decision for each token, and can thus impose a dependency in the solution on which decision you select
to work on. This is not a problem with a timeline since every token requires and ordering. However, in a resource,
things are different and we do not want to require an ordering but yet one of the nXn orderings (or more) may be
required in order to solve the resource flaw. This can be alleviated by the NO-OP of constraining a token with
respect to itself. In a timeline this covers the special case of an insertion in an empty timeline. However, that is only
required since we base the flaw on a token being active, and thus requiring such insertion. Rather, we should not
have to make such a commitment, but it is a small matter. So, to recap, resolution of this issue is accomplished by
permiting a choice that can effectively be a NO-OP for a resource. The api already permits this and the response
will be dependent on the underlying concrete class - Timeline v Resource.

Notes on Object Flaws 11

	tmpo2RqF1tracpdf

